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The cavitation effect, i.e., the process of the creation of a void of excluded volume in bulk solvent (a cavity),
is considered. The cavitation free energy is treated in terms of the information theory (IT) approach [Hummer,
G.; Garde, S.; Garcia, A. E.; Paulaitis, M. E.; Pratt, L. R.J. Phys. Chem. B1998, 102, 10469]. The binomial
cell model suggested earlier is applied as the IT default distributionpm for the numberm of solute (water)
particles occupying a cavity of given size and shape. In the present work, this model is extended to cover the
entire range of cavity size between small ordinary molecular solutes and bulky biomolecular structures. The
resulting distribution consists of two binomial peaks responsible for producing the free energy contributions,
which are proportional respectively to the volume and to the surface area of a cavity. The surface peak
dominates in the large cavity limit, when the two peaks are well separated. The volume effects become
decisive in the opposite limit of small cavities, when the two peaks reduce to a single-peak distribution as
considered in our earlier work. With a proper interpolation procedure connecting these two regimes, the MC
simulation results for model spherical solutes with radii increasing up toR ) 10 Å [Huang, D. H.; Geissler,
P. L.; Chandler, D.J. Phys. Chem. B2001, 105, 6704] are well reproduced. The large cavity limit conforms
to macroscopic properties of bulk water solvent, such as surface tension, isothermal compressibility and Tolman
length. The computations are extended to include nonspherical solutes (hydrocarbons C1-C6).

1. Introduction

The concept of the cavitation effect is an important element
of the recent theory of solvation. The “cavity” is defined as a
void of excluded volume in the bulk solvent prepared in order
to accommodate the solute particle. Constituting, along with
the van der Waals interaction contribution, the nonelectrostatic
solvation component, the free energy of cavity formation is now
considered as the main origin of the hydrophobic effect.1-4

The corresponding free energy change is a consequence of
reorganization of the medium structure around the cavity. This
reorganization takes place throughout the total volume of bulk
solvent and represents a complicated many-particle collective
phenomenon mainly responsible for the entropy increase ac-
companying the solvation process. This is why it is not as
tractable as other components of solvation free energy, which
are well understood in terms of conventional van der Waals
and electrostatic potentials.

The theory of the cavitation effect is an active area of recent
research.1,4-13 The objective is to construct a unified approach
covering the whole range of cavity sizes: from voids including
small and ordinary organic molecules (the radius of the sphere
boundary around the methane molecule is approximately 3 Å)
up to extremely large cavities associated, for example, with
protein structures, which can contain as many as 103-104

solvent particles.
The fundamental idea in the statistical theory of cavitation is

based on the notion that formation of a cavity with given size

and shape in bulk solvent can be identified as a density
fluctuation. Denoting the probability of this fluctuation asP0,
the cavitation free energy is expressed as14,15

Earlier work was aimed at modeling this probability.3,16-19 Later
computer simulations5,6,10,20-22 prompted a more appropriate
formulation. It was suggested1,5-7 to considerP0 as a first
member (m) 0) of the probability distributionPm for observing
exactly m solvent particles in a given cavity. The following
prescription for modelingPm was devised. As a first step, a
primary (default) distributionpm must be introduced as an initial
guess based on some intuitive physical idea. The information
theory (IT) then provides a method for systematically improving
pm by imposing additional constraints. These constraints are
introduced in terms of exact values of the first two distribution
moments 〈m〉 and 〈m2〉 which are available either from a
simulation or from experimentation and which must be fitted
under the condition of perturbing to a minimum extent the
default distribution. In this way, the algorithm to express the
resultingPm as a modified defaultpm reduces to a solution of
IT equations in which exact values of〈m〉 and〈m2〉 are inserted
as input data.

In the main body of original work,5-7,23-25 no physical
assumption was introduced in the default distribution. Thepm

were considered asm-independent quantities, which provided
a Gaussian law forpm after performing the IT refinement
procedure. This approach proved to be successful only for small
cavities (R < 3-4 Å). In our previous work, we considered a
more sophisticated binomial distribution
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∆Gcav ) -kBT ln P0 (1)

pm ) (nm)ym(1 - y)n-m (2)
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This model13 finds its roots in the cell theory of dense fluids,
which has a long history.26-30 In the present context, the cell
must be defined as a maximally sized element of space that
can accommodate at most one solvent particle. Its shape is not
explicitly specified; rather, one treats the distribution parameter
n in (2) as the number of cells in a given cavity, thus absorbing
implicitly any reference to the cell shape. The second parameter
y in (2) means the probability of finding a single solvent particle
in a given cell.

Having the IT refinement implemented, the binomial model
proved to work well for spherical cavities with radii denoted
as R up to R ) 6.4 Å (capable of including 30-40 water
molecules). It also successfully treated nonspherical real sol-
utes,13 namely, C1-C6 hydrocarbons, including linear, branched,
and cyclic structures.12 The prediction that∆Gcav is proportional
to the cavity volumeυ within the considered range of cavity
sizes is in accord with recent conclusions of other authors.9,10,31

The binomial model, however, failed in attempts to treat large
cavities (R> 10 Å). It can be shown that the default distribution
(2) predicts the corresponding asymptotic (R f ∞) result that
∆Gcav ∝ υ, whereas it is the different law∆Gcav ∝ S (with S
the surface area of the cavity boundary) that follows from the
macroscopic thermodynamical consideration.14,15,32Creation of
very large cavities obeys a macroscopic law consistent with the
assumption that the thermodynamics of cavitation can be treated
in terms of a continuum hydrostatic model of the water fluid.4,32

This phenomenon originates from strong attractive forces
between water molecules and results in a specific behavior of
density fluctuations in the vicinity of the cavity boundary.3,4,8,9

It can be also formulated as a tendency for those water molecules
confined inside the cavity volume to stick to the cavity surface.
The recent theoretical treatment of these effects is based on the
phenomenological density functional methodology which is
interpolated between large and small cavity extremes.4,8,9

The present work investigates an alternative route to a unified
cavitation theory. We suggest a modification of the binomial
default model which allows for properly describing the large
cavity limit. The connection of the two extreme cases is
performed by interpolation between the two types of the default
distributions for large and small cavities, in analogy with the
interpolation between the two extremal density functionals, as
elaborated by Chandler, Weeks, Sun, and their co-workers.4,8,9

2. Two-Peak Default Model

The binomial distribution (2) was derived by counting
different possibilities for arrangement of holes (i.e., empty cells)
in the fluid considered as a lattice of cells. Being essentially
combinatorial, this result represents a purely entropic effect and
ignores the interaction between the particles contained in
different cells. The interaction is implicitly introduced next, in
the framework of IT equations, where the first and second
moments of the particle number serve as a source of additional
information on the interaction in the system. By this means,
the binomial approach expresses the probability of the cavity
formation as

whereλ0, the quantity extracted by solving the IT equations, is
mainly responsible for the enthalpy component of the free
energy. Therefore, the interaction is treated uniformly, without
any additional assumptions of physical nature. Let us now
introduce such a supplementary assumption about the peculiarity
of interaction in large cavities. Considerm solvent particles in

the cavity withn cells (m e n). Providedm/n is of the order of
unity, the defaultpm is given in terms of the volume-defined
binomial distribution (2). The essential change is invoked only
at the final step of withdrawing particles from the large cavity,
i.e., whenm/n , 1. We assume then that the remainingm
solvent particles stick to the cavity surface. Such a hypothesis,
already mentioned above in section 1, conforms to general ideas
underlying the theory of hydrophobicity.1-4 At this moment,
one begins a new combinatorial count of probabilities that
includes only the interfacial layer with the number of cellsν ,
n. This allows one to consider the casen ∝ S opposite to the
casen ∝ υ for the volume distribution (2). As will be shown
below, this idea, for both surface and volume effects, is actually
realized as a two-peak default distribution. Because for small
cavities the single-peak binomial distribution must remain
unchanged, we need to construct the interpolation procedure
connecting the small and large cavity limits.

The new default model is initially formulated in terms of two
auxiliary binomial distributions for the surface (pm

s ) and vol-
ume (pm

v )

Similar to (2),y is the degree of cell occupation (0< y < 1)
and ν and n are the numbers of surface and volume cells,
respectively. As usual, they can be considered as noninteger
numbers (the binomial coefficients to be expressed in terms of
Γ functions). It is known13 thatn is roughly proportional toυ,
and we defineν to be proportional toS

where ω denotes the area of a surface cell, treated as an
adjustable parameter. Therefore, for large cavities

To assemble the desired combination of surface and volume
peaks, we define, as a first step, the unnormalized distribution
p̃m

wheremj is the threshold number of solvent particles in the cavity
switching the type of distribution.

The individual distributions (4) produce the averages

and the large cavity limit ensures the following set of inequalities

With mj defined in this way, the distribution (7) represents the
idea qualitatively formulated above. This distribution consists

P0 ) e-λ0(1 - y)n (3)

pm
s ) (ν

m)ym(1 - y)ν-m (m eν)

pm
s ) 0 (m > ν)

pm
v ) (nm)ym(1 - y)n-m (m e n)

pm
v ) 0 (m > n) (4)

ν ) S
ω

(5)

ν/n , 1 (6)

p̃m ) pm
v (m > mj )

p̃m ) pm
s (m e mj ) (7)

〈m〉v ) ny; 〈m〉s ) νy (8)

n > 〈m〉v . mj > ν > 〈m〉s

(ν f ∞, n f ∞) (9)
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of a pair of peaks that practically do not overlap (see Figure 1).
It can then be substituted by a simpler expression with similar
properties

Equation 10 will be accepted as the desired default distribution
(unnormalized). The presence of two well separated peaks in
the large cavity limit (9) is its most important feature. In the
limit of a small cavity, the peaks must merge, converting (10)
into an ordinary binomial distribution. This is readily achieved
in terms of the interpolation procedure modifying the large
cavity definition (5) as

Here the area of the surface cell is considered as a variable that
decreases whenn increases and reaches its minimum valueω
) ω∞ in the large cavity limit (9);q, n0, and s are the
interpolation parameters. We need to assume additionallyq g
1 and ν ) n if S/ω > n, which ensures physically relevant
behavior of quantityn as defined by (5) and (11). Parametern0

serves for switching between the two asymptotic regimes,
whereass controls the width of the turnover region.

3. Information Theory Correction

The final distributionPm corrected by means of the IT reads5,6

Here e-λ0 is a normalization factor whereas the Lagrangian
multipliersλ1 andλ2 are selected so as to exactly reproduce in
terms of (12) the first〈m〉 and the second〈m2〉 distribution
moments introduced as input data. For the present case, it is
expedient to reformulate (12) as

by considering instead ofλ2 the parametern (already present
in pm

v ) as the second Lagrangian factor. The resulting set of IT
equations definingλ0, λ1, andn is

The probability of a density fluctuation creating the cavity is
then

Whenn . ν, only the first term in brackets survives. In this
way, the proportionality of the cavitation free energy to the
cavity surfaceS is achieved for large cavities. It is implicitly
assumed here that the dependence ofλ0 on the cavity size is
weak; this assumption will be verified below in section 6.

The importance of the IT correction becomes apparent by
the notion that the simple model (10) is unacceptable as a
distribution describing a real solvent. Indeed, (10) with equal
weights for the two peaks as shown in Figure 1 would result in
pathologic macroscopic statistics. The correction factor e-λ1m

in (13) (or e-λ1m-λ2m2 in (12)) strongly reduces the relative height
of the surface peak providedλ1 is negative, and this property
indeed holds for the solution of eq 14 in the large cavity limit.
As the calculation in section 6 shows, the heights of the surface
and volume peaks form the ratio which decreases as a power
of 1/n (either asn-2 or asn-4/3).

By this means, due to the IT correction, the surface peak
becomes negligible when macroscopic thermodynamic proper-
ties of the fluid are the main interest. It, however, keeps the
dominating role in the expression forP0 as is seen from (15).

Note that, according to (13) and (14), the numbern of volume
cells must be determined individually for every solute cavity,
together withλ0 andλ1, as a solution to eq 14. For the further
application, it is convenient to define

whereϑ is considered as a second variable satisfying (14). This
approach appears different from that accepted earlier.5,6,13This
could be circumvented by using the canonical formulation (12)
whereλ2 is a regular Lagrangian multiplier. In essence, the two
approaches prove to be equivalent (see the Appendix).

4. Computational Scheme

It is convenient to separate the normalization factor in (13)

The right-hand parts of (14) are expressed in terms of the sums

We introduced here the notation

Figure 1. Two-peak default model for the large cavity limit, eq 9.

p̃m ) pm
s + pm

v (10)

ω ) qω∞{1 + 1 - q
2q [1 + tanh[( n

n0
)s

- 1]]} (11)

Pm ) p̃m exp(- λ0 - λ1m - λ2m
2) (12)

Pm ) (pm
s + pm

v ) exp(-λ0 - λ1m) (13)

1 ) ∑
m)0

n

Pm

〈m〉 ) ∑
m)0

n

mPm

〈m2〉 ) ∑
m)0

n

m2Pm (14)

P0 ) e-λ0[(1 - y)ν + (1 - y)n] (15)

n ) ϑ〈m〉 (16)

Pm ) e-λ0P̃m

P̃m ) P̃m
s + P̃m

v ) (pm
s + pm

v )e-λ1m

P̃m
s ) pm

s e-λ1m; P̃m
v ) pm

v e-λ1m (17)

S0(t) ) ∑
m)0

n

P̃m(t) ) S0
s(t) + S0

v(t)

S1(t) ) ∑
m)0

n

mP̃m(t) ) S1
s(t) + S1

v(t)

S2(t) ) ∑
m)0

n

m2P̃m(t) ) S2
s(t) + S2

v(t) (18)

exp(-λ1) ) t (19)
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The sumsSk
s and Sk

v, k ) 0, 1, 2, are performed with surface
and volume binomial distributions (4) modified by the factor
e-λ1m. For such a type of distribution, called “binomial-
exponential”(BE), these sums can be treated analytically.13 As
a result we obtain (18) in the closed form

Finally the IT equations (14) are rewritten as follows:

The pair of equations (22) define the values of two variables:
ϑ (16) and t (19) for a fixed value of parametery. The so
determined root fort givesλ0 according to (21), whereasn and
ν are computed in terms ofϑ by means of (16) and (5), (11).
The final result appears from the expression (15).

5. Asymptotic Analysis: The IT Equations

The expression for the cavitation free energy that follows
from (15), namely

must now be examined in order to establish its asymptotic
behavior. The logarithmic term produces the desired propor-
tionality to S, but we must become convinced that the
dependence ofλ0 on the cavity size is weaker than thisS
dependence. Therefore, we have to solve (21) and (22) in the
asymptotic limit

In this limit the following relations prove to be true

whereγ is a quantity yet indeterminate. Equation 25 is a guess
about the explicit form of the solution to the IT equations (22)
when only their two leading terms, corresponding to the limit
(24), are retained. By substitution of (25) into these truncated
equations, we expect to obtain identities and, additionally, to
establish the pertaining value of quantityγ.

A remarkable consequence of the first equation in (25) ist
) e-λ1 > 1. This impliesλ1 < 0, opposite to the ordinary case
of small-cavity and single-peak solution, whenλ1 is always
positive.13 Due to this unusual peculiarity of the large-cavity
solution, the relative heights of the surface and volume peaks
in the distribution (13) renormalize as required, producing the
ratio

In performing the expansion of the IT equations for the extreme
case (24), the following asymptotic relations, a consequence of
(25), are helpful:

After some manipulations, we obtain the asymptotic expressions
for the sums in (22)

where D ) (1 + ln(γn)/(ny))/1 + ln(γn)/n asymptotically
reduces to 1. InS0 the first term comes from the surface
component and the second term has the volume origin. This
verifies (26). InS1 andS2, all terms represent volume contribu-
tions, except the second one in brackets forS1, which proves to
be negligible at the end of the calculations. Finally, by
substituting (28) in (22), we obtain the leading terms of the IT
equations

They define the value ofγ introduced according to (25): by
solving (29) forγ the assumption (25) is verified.

6. Asymptotic Analysis: The Basic Consequences

In the asymptotic limit the variance of the normalized number
distributionPm is proportional to its mean value

where k is a universal constant. The leading terms of the
expansion for the parameters of (29) are

Additionally, the leading terms forλ0 andλ1 follow from (21)
and (27)

An unexpected limitation arises due to the second equation in
(31). It is seen from (32) thatγ must necessarily be positive,
which strongly restricts the choice ofy by the conditionk + y
>1. Becausek , 1 for water (see section 7), this requires
1 - k < y < 1, a quite undesirable constraint, which is
unacceptable for describing small and moderately large cavities
(R < 10÷12 Å). To circumvent this limitation, we recall that
only leading members of the expansion are present in (31), and
we assume here that the correction has the order 1/n. This notion
allows writing the second equation in (31) in the relaxed form

S0(t) ) (1 - y + yt)ν + (1 - y + yt)n

S1(t) ) νyt(1 - y + yt)ν-1 + nyt(1 - y + yt)n-1

S2(t) ) S1(t) + (yt)2[ν(ν - 1)(1 - y + yt)ν-2 +

n(n - 1)(1 - y + yt)n-2] (20)

eλ0 ) S0(t) (21)

〈m〉 )
S1(t)

S0(t)

σ2 ) 〈m2〉 - 〈m〉2 )
S2(t)

S0(t)
- (S1(t)

S0(t))
2

(22)

∆Gcav ) -kBT{ln[(1 - y)ν + (1 - y)n] - λ0} (23)

〈m〉 f ∞; n f ∞; ν f ∞; ν/n f 0 (24)

t ) 1 + ε, (ε f + 0); enyε ) γn (25)

weight of the surface peak
weight of the volume peak

) 1
γn

(26)

(1 - y + yt)l ) [(1 + εy)1/εy] lyε ) elyε; l ) ν,n (27)

1 - y + yt ) 1 + εy ) 1 +
ln(γn)

n

S0 ) 1 + γn

S1 ) γn2yD(1 + ν
γn2)

S2 ) γn2yD + γn2(n - 1)(yD)2 (28)

〈m〉 ) ny

σ2 ) ny(1 - y+y/γ) (29)

σ2 ) k〈m〉 (30)

ϑ ) 1
y
;

1
γ

) k + y - 1
y

(31)

λ0 ) ln S0 ) ln(γn)

λ1 ) -ε ) -ln(γn)/(yn) (32)

1
γ

)
k + y - 1 + c1/n

y
(33)
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wherec1 is an unknown constant; its value could be extracted
if the expansion in terms of 1/n were extended for a smaller
order of magnitude. We only expect thatc1 > 0; in this casey
can be expressed as

This ensures thatγ > 0 providedc1 - c > 0. Hoping this is
indeed so, we therefore consider (34) as a definition ofy in
terms of another parameterc, whenn is large. The consistency
of such reasoning would be verified by a practical calculation
provided it were shown that the numerical solution to full (not
expanded) eq 22 does really exist for any (not necessarily large)
value ofn with y defined according to (34). Computations in
section 8 confirm this guess.

We now infer the asymptotic free energy value from (5), (23),
and (32)

Because the leading term must be equal toΓS whereΓ is the
surface tension, the value ofω∞ is fixed as

The constant term in (35) can be determined by examining the
asymptotic free energy behavior found from a numerical
solution.

A final comment is addressed to a specification of a higher
order correction in (33) and (34) taken rather arbitrary asO(1/
n). A more relevant choice would seem to beO(1/R); we can
modify it as

The pertaining counterpart of asymptotic eq 35 then becomes

This limit represents long-range asymptotic behavior compatible
with a macroscopic thermodynamic treatment.32,33Short-range,
(33) and (34), and long-range, (38), limits are discussed below
in more detail.

7. Computational Results

Let us summarize the strategy of the suggested computational
scheme. It deals with parameters of two levels. The first level
parameters areϑ (16) andt (19). Being determined as solutions
to (22), they actually represent two Lagrangian factors inherent
to the present model. The second level quantities are ordinary
parameters inserted as input data. They include eitherc or b,
definingy in terms of either (34) or (37), and also the parameters
q, n0, andsof the interpolation function (11). Quantityq allows
for fitting the small cavity limit, whereasn0 andsare responsible
for the proper description of the turnover range of cavity sizes.

The total procedure will be called “two-peak BE scheme” in
the following text. It computes the cavitation free energy in
terms of eqs 1 and 15. The IT equations forϑ ant t were solved
numerically, producingλ0 andλ1, ϑ, n, andν for different radii
R. The MC simulation results for∆Gcav(R)10 were fitted by
adjusting second level parameters. These data are available for
R < 10 Å. With this ultimate parametrization, the plot was
extended for larger spheres by means of the present method.
The moments〈m〉 andσ2 were extracted from MD simulation
based on the TIP4P34 trajectory for bulk water solvent. The
GROMACS package35 was used and Coulomb interactions were
treated in terms of the PME technique36 as discussed earlier
[ref 13].The second moment was computed from the pair
distribution function up toR ) 10 Å. For larger values ofR, an
interpolation procedure was used. The resulting plot ofσ2/〈m〉
is shown in Figure 2. It reaches the valueσ2/〈m〉 ) 0.102 atR
) 15 Å. Its asymptotic limitk can be extracted from the given
value of isothermal compressibilityøT,37 and we tried two
options: k ) 0.08 (the result of TIP4P simulation oføT

38) and
k ) 0.06 (from the experimental valuesøT ) 4.5× 10-4 MPa-1,
Γ ) 0.1036 kcal/mol/Å2 for T ) 298 K39). The difference proved
to be negligibly small and the valuek ) 0.06 was used in all
following calculations.

The final results are illustrated by Figure 3a,b where two
different values of parameters in the interpolation function (11)
were used. The values ) 1 scales the argument of the
hyperbolic tangent asR3 whereass ) 1/3 corresponds to its
scaling asR (becausen is roughly proportional to the cavity
volume). The second case extends significantly the turnover
region. Other second level parameters (c, q, and n0) were
optimized in order to gain the best fit to the simulation results
for 3.2 Å < R < 10.0 Å (Figure 3a).

Figure 4 illustrates the importance of the asymptotic analysis
which suggests expression (34) for the basic parametery. An
obvious alternative option would be a simple variation ofy as
a second level parameter, independent ofR. The failure of this
approach, clearly demonstrated by curve (2), shows how
sensitive is the computation in the turnover region (aroundR
≈ 10 Å) to the details of a default model and its parametrization.
An attempt to use eq 37 (and optimizing parameterb), with y
depending onR more weakly than in eq 34, also proved to be
unsuccessful. The result, similar to curve 2 in Figure 4, revealed
large fluctuations in the turnover region. We therefore tried a
more elaborate long-range model

The same asymptotic free energy expression (38) appears as

y ) 1 - k - c
n
; c > 0 (34)

∆Gcav ) kBT(- S
ω∞

ln k + 2 ln n + ln
1 - k
c - c1

) (35)

ω∞ ) -
kBT

Γ
ln k (36)

1
γ

)
k + y - 1 + b1/n

1/3

y
; b1 > 0

y ) 1 - k - b/n1/3; b > 0 (37)

∆Gcav ) kBT[- S
ω∞

ln(k + b

n1/3) + 4
3
ln n + const] =

ΓS(1 + b

n1/3k ln k) (38)

Figure 2. Illustration of the size dependence for the ratioσ2/〈m〉.

y ) 1 - k - c
n

- b

n1/3
(39)
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its result. TheR dependencies of∆Gcav within the extended
range ofR are shown in Figure 5 for several realizations of the
definition (39); they are compared with the best short-range
curve (eq 34 withs ) 1/3). If both constantsc andb in (39) are
optimized (Figure 5, curve 2), a negative value ofb results,
which seems to be incompatible with the conventional point of
view.10,32,35Both casess) 1 ands) 1/3 were again considered,
as in Figure 3, showing the preference of the latter option, only
this choice being illustrated. We finally tested in eq 39 the value
b ) 0.078 based on the MD simulation of large water clusters.40

Only parameterc was optimized in this case. The corresponding

curve 1 in Figure 5 describes well the turnover region and also
shows reasonable long-range behavior. It is accepted below as
a benchmark result.

8. Discussion
It is seen from Figures 3 and 5 how the two-peak BE model

accomplishes a connection between the small and large cavity
limits, making ∆Gcav proportional either to the volume or to
the surface area of a given cavity. The ultimate result is
qualitatively the same as that obtained with different versions
of the density functional model.4,8,9 By adjusting the second
level parameters, i.e.,c in (34) and (39) and the parameters of
the interpolation function (11), the simulation results for 3.2 Å
< R < 10.0 Å available from the literature10 can be adjusted
with good accuracy (for the free energy rmsd) 0.7 and 0.8
kcal/mol with eqs 34 and 39, respectively; see profiles (1) in
Figures 3a and 5). The lower boundary of the radius range
accepted here corresponds to a molecule as small as methane.
Considering smaller cavities makes no sense due to the obvious
limitation n . 1 of the binomial model13 (actually,n = 6 for R
) 3.2 Å). The character ofR dependence of the cavitation free
energy for larger cavities is controlled by the powers in the
argument of the hyperbolic tangent in the interpolation function
(11). As seen from Figure 3b, a more natural looking smooth
plot is obtained withs ) 1/3, which corresponds to the
interpolation scale proportional toR. This conclusion was
confirmed by the same test with eq 39. The short-range
asymptotic limit with eq 34 is reached afterR ) 40 Å (Figure
3b). Additional input information (currently unavailable) is
needed in order to fix definitely the profile of∆Gcav(R) in the
turnover region and thus establish the corresponding value of
s. This could be obtained either by the extension to larger radii
of the range of simulation data or by refining the theoretical
model by treating explicitly the mechanism of density fluctua-
tions in the turnover region.

The basic parametery of binomial distributions deserves
special comment. It represents the probability of cell occupation,
being accepted to be the same for both volume and surface cells.
Most remarkable is its dependence on the cavity size according
to either (34) or (39). The second level parameterc, performing
a connection of the two extremes of the free energy profile, is
considered on equal grounds with interpolation parameters of
(11). Both eqs 34 and 39 can formally be applied down toy >
0; a more realistic boundary condition isn ) ν. This unphysical

Figure 3. (a) Free energy profiles based on eq 34 with short-range
asymptotic behavior. The fitting region 3.2 Åe R < 10 Å. (1)s ) 1/3,
q ) 1.36,n0 ) 745,c ) 3.28. (2)s ) 1, q ) 1.31,n0 ) 526,c ) 3.39.
(3) The simulation data [ref 10]. (b) Free energy profiles based on eq
34 with short-range asymptotic behavior. Overview for 10 Åe R <
40 Å. Curves 1 and 2 correspond tos ) 1/3 and s ) 1 with other
parameters being the same as in Figure 3a.

Figure 4. Free energy profiles for different models ofy. (1) eq 34,
the same curve as (1) in Figure 3b. (2) Constanty ) 0.94,s ) 1/3 with
other parameters optimized. (3) Constanty ) 0.92,s ) 1/3 with other
parameters optimized.

Figure 5. Free energy profiles based on eq 39 with long-range
asymptotic behavior;s ) 1/3. (1) b ) 0.078,q ) 1.40,n0 ) 149,c )
2.50. Theb value is extracted from the simulation data [ref 40]; other
parameters optimized. (2)b ) -0.179,q ) 1.84,n0 ) 575,c ) 2.44.
All parameters, includingb, are optimized. (3)b )0, eq 34, the same
profile as in Figure 3b (1).
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bound is never reached in practical computations (withR >
3.2 Å), and we did not try to adjust (34) and (39) for the case
n f 0. In practice, they value reaches 0.5 for the small cavity
limit, which is in accord with the earlier result obtained within
the single-peak binomial scheme.13

Then dependence ofy follows from the asymptotic analysis
of section 6. Its importance is demonstrated by Figure 4. If
y were considered, instead ofc, as a simple second level
parameter common for all spheres, the smooth matching of large
and small cavity regimes would become impossible. The curve
2, with y fixed at constant value 1- k ) 0.94 shows how the
instability of solutions to the IT equations produces large
fluctuations in the transition region, which cannot be eliminated
by simple fitting of second level parameters with fixedy.
Computations in this region are extremely sensitive to the input
values of the first and second distribution moments which,
therefore, must be determined very carefully. For curve 2,
however,y represents its correct asymptotic limit. When this
value is shifted (curve 3) even the asymptotic limit of the free
energy is perturbed, although we have made the obligatory
change in the definition (36) ofω∞ (ln k must be substituted by
ln(1-y)). This is a signal that no correct solution with desired
properties is available. As pointed out above in section 7, the
model (37), wherey varied too slowly, also displayed poor

results, similar to curve 2 in Figure 4. Altogether, one can
consider (34) or (39) as necessary ingredients of the two-peak
default model.

The two-peak distributions are portrayed in Figure 6 for
several values ofR. Their important characteristics, such asy,
n, ν, andϑ, are also listed. The general trends expected based
on the formulation of the two-peak model in sections 2 and 3
are clearly reproduced. The increase of the cavity size is indeed
accompanied by the increase of the peak separation, and also
the relative height of the volume peak greatly increases as
compared to the surface one. The asymmetry of the peaks in
the turnover region is remarkable.

The two-peak BE model is not limited to a spherical shape
of solutes, and we tested it also for the case of nonspherical
cavities. Figure 7 shows the results of the two-peak computation
for a set of 11 hydrocarbons for which MC simulations of∆Gcav

have been reported.12 This set has been studied earlier with
several modifications of a single-peak binomial model.13 All
details about the systems and their computations can be found
in refs 12 and 13. In the present test, the parameters of the two-
peak computations were borrowed without any change from the
computation of spheres as reported above. The results appear
to be satisfactory, and we have only to comment on the
underlying simulation data. Being obtained in the framework
of the thermodynamic perturbation method,12 they cannot
represent quite precisely the hard-core cavitation effect. The true
value of the “cavitation energy” is contained within a strip
between the two soft-cavity bounds with a misfit of ap-
proximately 1-2 kcal/mol. This problem is discussed in more
detail in ref 13, and Figure 7 shows both these bounds (eqs 8a
and 18b of ref 13). Note that the upper bound also represents
the interpretation of the cavitation free energy as suggested in
the original simulation work.12 The earlier reported single-peak
BE computation was located closer to the lower bound very
similarly to the present two-peak result.

9. Conclusion

By considering the two-peak distributionPm for the number
mof solvent particles occupying a given cavity in the bulk water
solvent, it is possible to treat consistently the cavitation free
energy in the entire range of the cavity size, beginning from
the sphere with radiusR ) 3.2 Å as a smallest solute. The
procedure based on the IT approach5-7 inserts the first two
distribution moments〈m〉 andσ2 as input data and applies the
binomial cell model13 for the individual peaks constitutingPm.
The primary default distribution, originating from the cell theory

Figure 6. Influence of the sphere size on the shapes of two-peak
distributions. The unnormalized volume (P̃m

v ) and surface (P̃m
s ) peaks

are defined in eq 17. Logarithmic scale is used along the ordinate axis.
The computations are based on the short-rangey model (34) with
parameters corresponding to Figure 3a(1). The peaks for small radii
(R ) 4.9 and 7.0 Å) are truncated stepwisely from the side of larger
m.

Figure 7. Cavitation free energies for alkanes and cycloalkanes (υ is
the cavity volume). (1) MC simulation data,12 eq 18a of ref 13. (2)
MC simulation data,12 eq 18b of ref 13. (3) The two-peak BE model
based on eq 39. The parameters are specified in Figure 5 (1).
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of dense fluids, takes into account only entropic effects
accompanying cavity formation. It is systematically improved
by solving IT equations for given〈m〉 and σ2; the interaction
effects are introduced implicitly at this stage.

The parametrization for the asymptotic limit of large cavities
fits two macroscopic properties of water, namely, surface tension
Γ and isothermal compressibilityøT. A more detailed long-range
asymptotic treatment is available by adding Tolman lengthδ33,40

as an extra input information. The large cavity (two-peak) and
small cavity (single-peak) distributions are connected by an
interpolation procedure which prescribes how the basic param-
eters of the model (the degree of cell occupationy and the area
of surface cellsω) change during the variation of the cavity
size between the two limits. The interpolation fory includes
long-range (eq 39) and short-range (eq 34) options. The first
one gives a correct long-range limit, but the second is simpler
and describes better the smaller range beyond this limit.

The MC simulation data for small cavities10 are well repro-
duced by fitting the interpolation parameters. The parametriza-
tion is, however, less definite in the region of the intermediate
cavity size because of the lack of benchmark input information.

The spherical case is simple because one has to imitate a
very simple function of a single variableR. A standard
expansion in powers of 1/R seems to be sufficient.10 Therefore,
a test on a predictive power of any cavitation model must include
nonspherical objects. In this respect, the computation for
hydrocarbons (Figure 7) is a first step in the required direction.
Further studies may be addressed largely to extending the range
of sizes and shapes of test nonspherical solutes. Numerical
simulations of cavitation energies for such systems should be
the background for such studies.
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Appendix: The Two-Peak BIT Technique
We have also considered a canonical IT formulation in terms

of eq 12. Here a new Lagrangian factorλ2 substitutes for the
parametern of the BE scheme (section 3) as a first level
parameter involved in a solution of IT eq 22. Therefore, the
definition of n must now be additionally specified. This more
sophisticated scheme (the binomial information theory or BIT
scheme) has been studied earlier at the single-peak level.13

Two-peak BIT computations for large cavities are complicated
because no analytical expressions exist for binomial sums (18),
as in the BE scheme. Straightforward calculations were possible
up to R ) 20 Å. For larger cavities, we used the Gaussian
approximation for the binomial peaks42 with the same mean
values and variances

This is legitimate when sums (18) are considered because the
tail effects are then negligible. However, truncation of these
Gaussian peaks from the side of largem (themm ) ν or n) is
necessary, as can be seen from Figure 6. The sums were
computed as integrals within the limits (-∞,ν) and (-∞,n).
Having determined in this way valuesλ0, λ1, andλ2 by solving
eqs 22, we could return to the true binomial expression (15)
for the probability of cavity formation.

The interpolation procedures (eqs 11 and 34) were the same
as in the main text. The asymptotic analysis performed with
the Gaussian peak model repeated the results of sections 6 and
7.

These BIT computations produced no essential new results
as compared to the much simpler BE scheme, and no extra
illustrations are therefore required.
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